Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 22(4): 2523-2590, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37070214

RESUMO

Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in µg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 µg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.


Assuntos
Anti-Infecciosos , Extratos Vegetais , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
2.
Adv Sci (Weinh) ; 10(6): e2205301, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563134

RESUMO

The rapid dissemination of antibiotic resistance accelerates the desire for new antibacterial agents. Here, a class of antimicrobial peptides (AMPs) is designed by modifying the structural parameters of a natural chickpea-derived AMP-Leg2, termed "functionalized chickpea-derived Leg2 antimicrobial peptides" (FCLAPs). Among the FCLAPs, KTA and KTR show superior antibacterial efficacy against the foodborne pathogen Escherichia coli (E. coli) O157:H7 (with MICs in the range of 2.5-4.7 µmol L-1 ) and demonstrate satisfactory feasibility in alleviating E. coli O157:H7-induced intestinal infection. Additionally, the low cytotoxicity along with insusceptibility to antimicrobial resistance increases the potential of FCLAPs as appealing antimicrobials. Combining the multi-omics profiling andpeptide-membrane interaction assays, a unique dual-targeting mode of action is characterized. To specify the antibacterial mechanism, microscopical observations, membrane-related physicochemical properties studies, and mass spectrometry assays are further performed. Data indicate that KTA and KTR induce membrane damage by initially targeting the lipopolysaccharide (LPS), thus promoting the peptides to traverse the outer membrane. Subsequently, the peptides intercalate into the peptidoglycan (PGN) layer, blocking its synthesis, and causing a collapse of membrane structure. These findings altogether imply the great potential of KTA and KTR as promising antibacterial candidates in combating the growing threat of E. coli O157:H7.


Assuntos
Cicer , Escherichia coli O157 , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Peptídeos
3.
Carbohydr Polym ; 273: 118616, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561014

RESUMO

With the rising demand for fresh and ready-to-eat foods, antimicrobial packaging has been developed to control or prevent microbial growth as well as maintain food quality and safety. Chitosan is an advanced biomaterial for antimicrobial packaging to meet the growing needs of safe and biodegradable packaging. The application of natural essential oils as antimicrobial agents effectively controls the growth of spoilage and pathogenic microbes. Thus, chitosan edible coatings and films incorporated with essential oils have expanded the general applications of antimicrobial packaging in food products. This review summarized the effect of essential oils on modifying the physicochemical characteristics of chitosan-based films. Notably, the antimicrobial efficacy of the developed composite films or coatings was highlighted. The advances in the preparation methods and application of chitosan films were also discussed. Broadly, this review will promote the potential applications of chitosan-essential oils composite films or coatings in antimicrobial packaging for food preservation.


Assuntos
Antibacterianos/farmacologia , Quitosana/farmacologia , Embalagem de Alimentos , Conservação de Alimentos/instrumentação , Membranas Artificiais , Óleos Voláteis/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Quitosana/química , Óleos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...